

BiodivRestore Final Conference

21-22 October 2025

University of Málaga (Spain) & Online

Welcome back

by Rainer Sodtke, BiodivRestore Coordinator & Co-chair Biodiversa+

#BiodivRestore

Posting about the BiodivRestore Final Conference on social media?

Don't forget to tag

@BiodiversaPlus

Some general information

- This meeting is being recorded
 - → The recording and slides will be shared on the Biodiversa+ website biodiversa.eu

• We expect...

> 190
participants
online

> 55
participants
on site

their biodiversity, including a focus on aquatic systems

BiodivRestore Projects presentations

Session #2

Moderated by Dirk Schmeller (FishME project)

#2. How can we assess trade-offs and synergies between targets, benefits, and policies for conservation and restoration?

Exploring governance, objectives, costs and human impacts

BIO-TRADE

Protecting Biodiversity through Regulating Trade and Business Relations

By Anu LÄHTEENMÄKI-UUTELA, Finnish Environment Institute

Consortium: Environmental Policy, Finnish Environment Institute (SYKE), Helsinki, Finland

Centre for Private Governance, University of Copenhagen, København S, Denmark

Raoul Wallenberg Institute for Human Rights and Humanitarian Law, Lund, Sweden

Development and Environment, University of Bern, Bern, Switzerland

Problem

European consumption drives biodiversity loss globally

Picture: Joa Souza AOP

Response: regulatory action

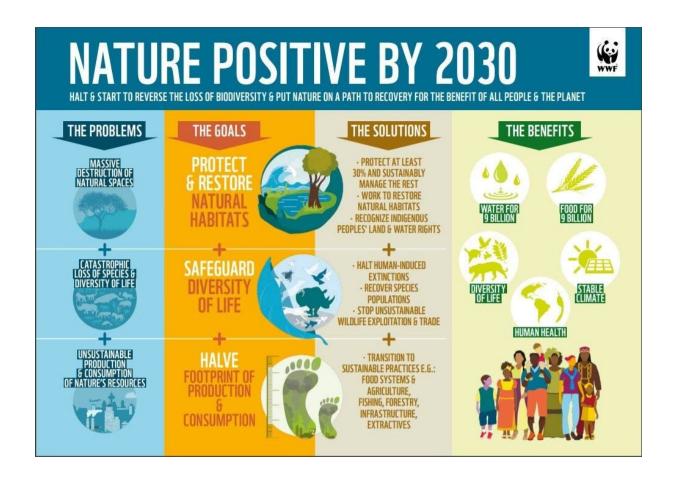
EU and European countries **prohibit** commodities and goods with negative impacts

Picture: WWF

Anti-regulation movement in Europe

Weakening all environmental laws because it costs to comply

Picture: S&D Group in the EU parliament, vote 2024



BIO-TRADE conclusion

Both needed: biodiversity law for **production** & biodiversity law for supply chains and **consumption**

Figure: WWF

BIOCONSENT

Forest biodiversity restoration policy and management

By . Metodi Sotirov, University of Freiburg, DE

Consortium: Forest and Environmental Policies, University of Freiburg, Freiburg, Germany

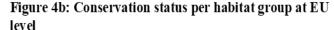
Ecosystems Services and Management, International Institute for Applied Systems Analysis, Laxenburg, Austria

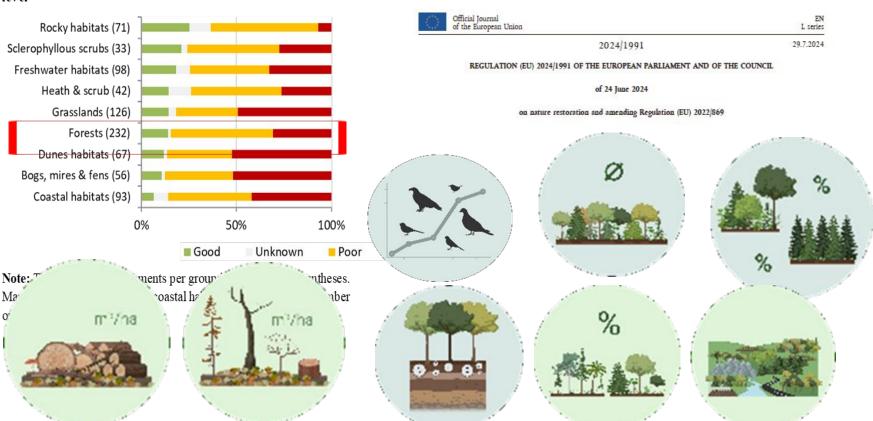
Business Management, University of Forestry Sofia, Sofia, Bulgaria

Bioeconomy, European Forest Institute Joensuu, Joensuu, Finland

Resilience, European Forest Institute Bonn, Bonn, Germany

Bioeconomy and Governance & Landscape dynamics and biodiversity, Forest Sciences and Technology Centre of Catalonia, Solsona, Spain


Business Administration, Technology and Social Sciences, Luleå University of Technology, Luleå, Sweden


Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden

The Puzzle: forest degradation in EU, ambitious EU policies, but what about policy effectiveness?

Brussels, 20.5.2020 COM(2020) 380 final

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

EU Biodiversity Strategy for 2030

Bringing nature back into our lives

Brussels, 16.7.2021 COM(2021) 572 final

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN
PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL
COMMITTEE AND THE COMMITTEE OF THE REGIONS

New EU Forest Strategy for 2030

BiodivRestore ERA-NET COFUND

Conservation and restoration of degraded ecosystems and their biodiversity, including a focus on aquatic systems

www.biodiversa.eu

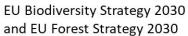
Main policy relevant conclusion:

- policy responses of countries
- behavioral responses of owners to EU policy and climate change

together with

- different management strategies
- under different scenarios
- resulting trade-offs and synergies

all matter for EU biodiversity restoration, but differentially!


Lesson 1: National institutions and dominant coalitions shape positive, negative and divided responses to EU policy and climate changes

National S	ubsystem	
Sweden	1 dominant <i>Timber Production Coalition; less dominant Environment Coalition</i>	
	Dominant Policy beliefs: Increased timber production for bioeconomy and climate mitigation, national authority Synergies: production-climate mitigation-bioeceonomy	
Germany	3 dominant <i>Multifunctionality, Adaptive management</i> and <i>Environment Coalitions</i> + <i>Hunting</i> and <i>Recreation coalitions</i>	
	Policy beliefs: Multifunctionality/close-to-nature forestry; production and conservation for climate mitigation/adaptation; carbon uptake + storage; divided on EU authority Synergies: Close to nature forestry-conservation-climate mitigation/adaptation	
Spain/ Catalonia	1 dominant Environment Coalition, less dominant Forestry Coalition	
	Policy beliefs: Multifunctionality; conservation and sustainable use for climate mitigation/adaptation and rural development; EU authority welcome Synergies: conservation-sustainable use-climate mitigation/adaptation	

and EU Forest Strategy 203
GENTLY REJECTED

Reponses to EU policy

EU Biodiversity Strategy 2030
SUPPORTED

EU Biodiversity Strategy 2030 and EU Forest Strategy 2030 SUPPORTED

Lesson 2: Diversity of forest owners and managers shape positive, negative and divided responses to EU biodiversity and climate policy

Country	Forest owner type (FOT)	Objectives 1–2 (Conservation management)	Objectives 3–4 (Close-to-Nature, Resilience)	Objectives 5–6 (Sustainable Management)
Germany	Multifunctionalists	A	**	A
	Environmentalists	A A	A	>
	Optimizers	▼	>	A
	Traditionalists	**	**	**
Poland	Multifunctionalists	A	A A	A
	Optimizers	▼ ▼	**	~
Slovenia	Multifunctionalists	**	**	**
	Environmentalists	A	>	>
	Optimizers	▼	▼	>
	Traditionalists	**	▼ ▼	**
Sweden	Environmentalists	**	A	•
	Multifunctionalists	>	>	>
	Optimizers	>	>	•

Active SUPPORT

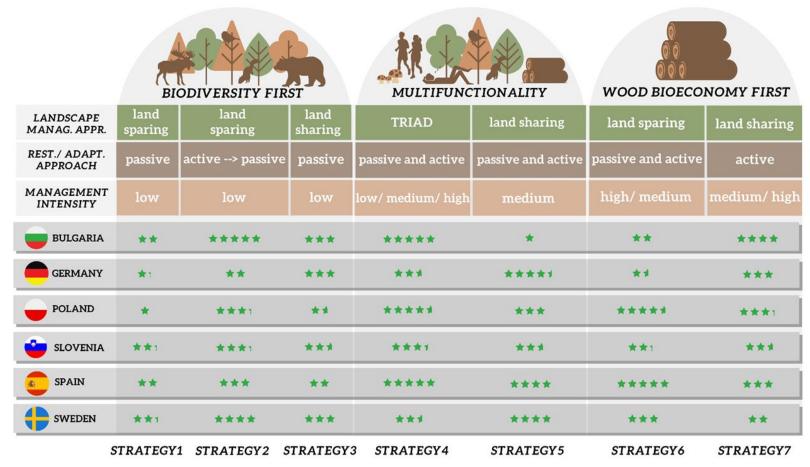
- 'Multi-Functionalists' and
- 'Environmentalists'

Passive SUPPORT:

- 'Passive' forest owners

Active RESISTENCE:

- 'Traditionalists'
- 'Optimizers'



Conservation and restoration of degraded ecosystems and their biodiversity, including a focus on aquatic systems

Lesson 3: Diversity of spatial restoration strategies can support EU biodiversity and climate policy under contrasting scenarios

Active RESTORATION

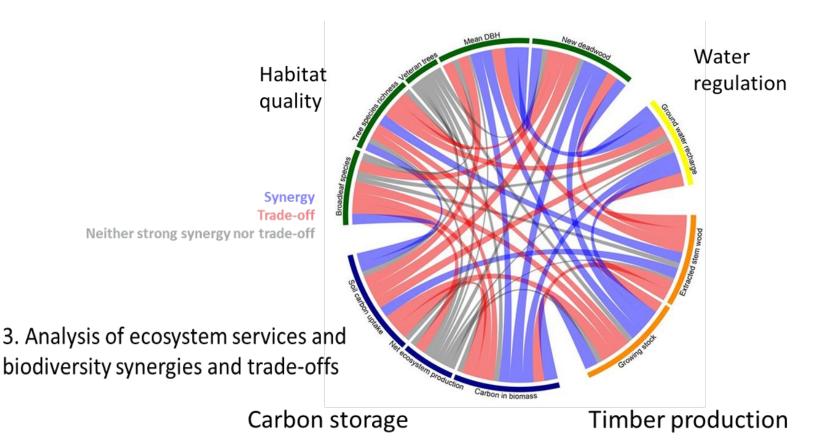
- Land sharing (extensive)

Passive RESTORATION

- Land sparing (intensive, strict)

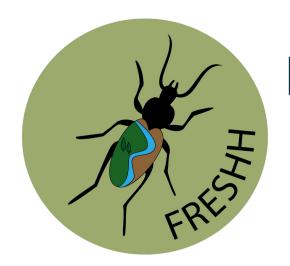
Active and passive RESTORATION

- TRIAD (intensive, extensive, strict)


Lesson 4: Need to anticipate and manage many different trade-offs and synergies between ecological, economic and social benefits

1. Implementation strategy + forest owner behavior

2. Model-based assessment of ecosystem services and biodiversity under climate change

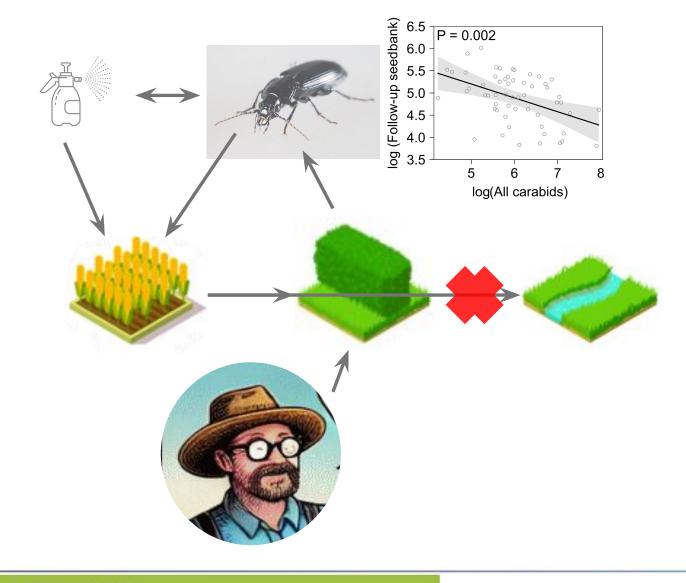


Biodiversa+ BiodivRestore

Farmer acceptable REstoration of Semi-natural Habitat to limit Herbicides

Project Leader: David A. Bohan, INRAe (FR); Presented by Pavel Saska, CARC

Project partners: WUR (NL), SLU (S), UIBK (AT), CRI (now CARC; CZ)


Ecological questions

 Do Semi-Natural Habitats (SNH) support carabids and natural weed regulation?

 Is biodiversity (eDNA) in freshwaters promoted by SNH presence?

Socio-economic question

Why don't farmers adopt SNH?

Positive outcomes

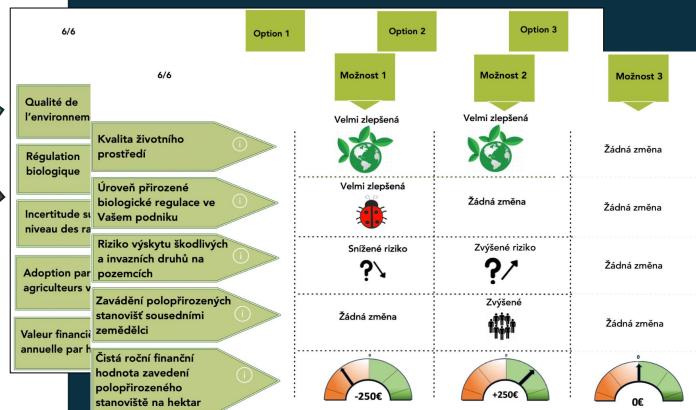
1. We learnt that trans-disciplinary working is important and potentially impactful

- a) Policy and societal impacts
- b) Opportunity to learn and enhance one's expertise

Challenges

Cross-domain difficulties of working together –
 i.e. co-creation of a DCE/questionnaire
 between socio-economists and ecologists;
 complexity of working across multiple countries
 (translation, language and phrasing). Small
 problems propagate on work and time leading
 to major delays.

Positive outcomes


High contribution (~1000 farmers) to DCE / Questionnaire

64% adopters (willing to pay) (younger farmers, smaller farms, lower income)

36% are willing to accept (need to be paid) (older farmers, larger farms, bigger income)

Challenges

Willingness to participate is declining among farmers (competition with other projects, legislation fatigue, annoyance with scientists, protests). This can include workshops, questionnaires, providing data, etc. Needs and timescales of farmers and scientists are different...

Positive outcomes

3. Better understanding of the carabid-weed seed predation association and field management effects on both carabids and redundancy/resilience of weed seed predation

Challenges

Underfunding (NL) – delayed field work – delayed joint outputs

- a) Weed seed removal is positively associated with carabid activity density (meta-analysis)
- b) Carabid densities in crop fields are usually lower than desired to achieve effective regulation
- c) Carabid beetles are negatively affected by management syndromes (meta-analysis)
- d) Management intensity negatively affects resilience of seed predation
- e) Landscape complexity supports resilience in seed predation

Good papers!

Policy impacts

- Farmers' opinion is important: Two groups of farmers (willing to pay / willing to accept).
 - Currently all farmers are treated as equal in policy. Our work suggests that a different messaging
 approach and support structures will be necessary in policy if we are to achieve our aims of modifying
 farmer behaviour FRESHH socioeconomic investigations allowed us to better understand the values
 and mentality of farmers and better adjust our science to match their needs.
- Freshwaters are intimately linked to agricultural management and are an important component part of agricultural landscapes
 - More communication of this to farmers and other stakeholders is necessary, alongside more research to explore how agricultural impacts can be minimised and aquatic biodiversity maximised.
- Solid scientific results on how carabids contribute to resilient weed regulation.

Priority areas for conservation and restoration of Amazonian forest-frugivorous fish interactions and associated fisheries FORESTFISHER

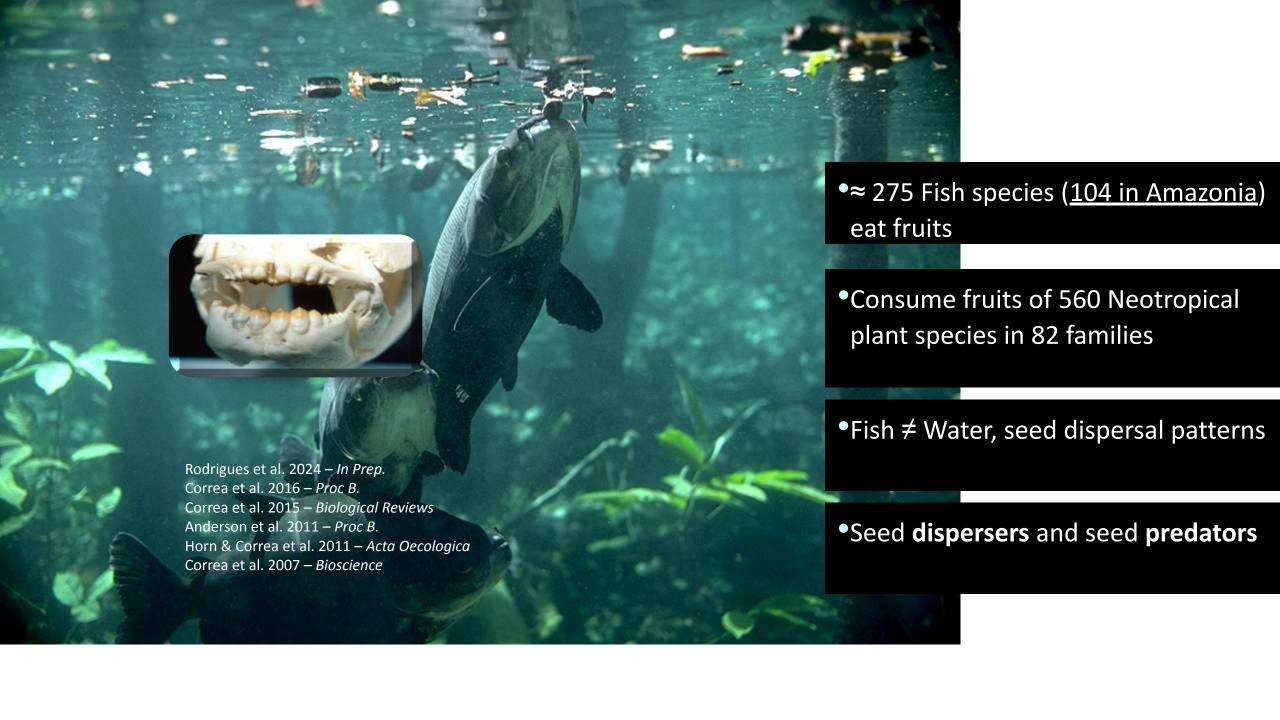
Consortium

Financed

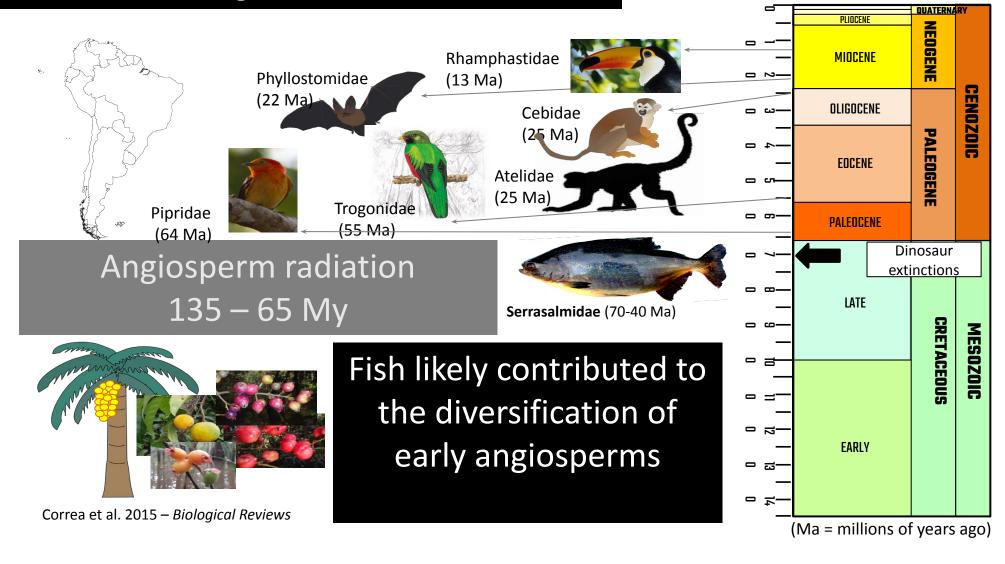
- 1. Institut de Recherche pour le Développement, France
- 2. Instituto Politécnico de Bragança, Portugal
- 3. Technical University of Munich, Germany
- 4. Federal University of Amazonas, Brazil
- 5. Universidade Estadual de Mato Grosso do Sul, Brazil

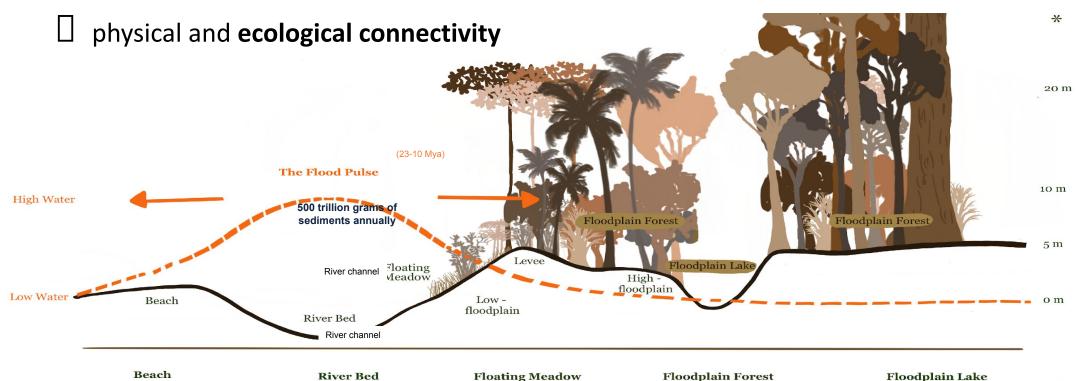
Self-financed

- A. Mississippi State University, USA
- B. Federal University of Rondônia, Brazil
- C. State University of Maringá, Brazil
- D. Universidade Federal de Goiás, Brazil
- E. National Center for Monitoring and Early Warning of Natural Disasters, Brazil


Subcontracted

1ª. NGO - AÇÃO ECOLÓGICA GUAPORÉ, Brazil





Fish: oldest frugivorous vertebrates

Amazonian floodplains and the flood pulse

Beach

- Seasonal habitat
- Nesting habitat for shorebirds & turtles

River Bed

- Longitudinal connectivity
- Migration route
- Dispersal route

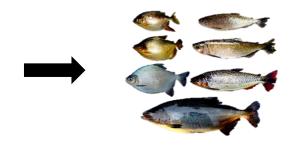
Floating Meadow

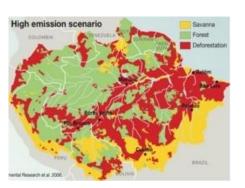
 Seasonal habitat for juvenile fishes

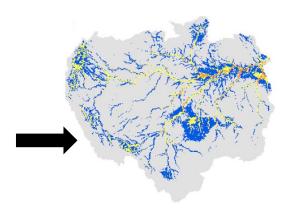
• Seasonal habitat for aquatic & ground dwelling fauna

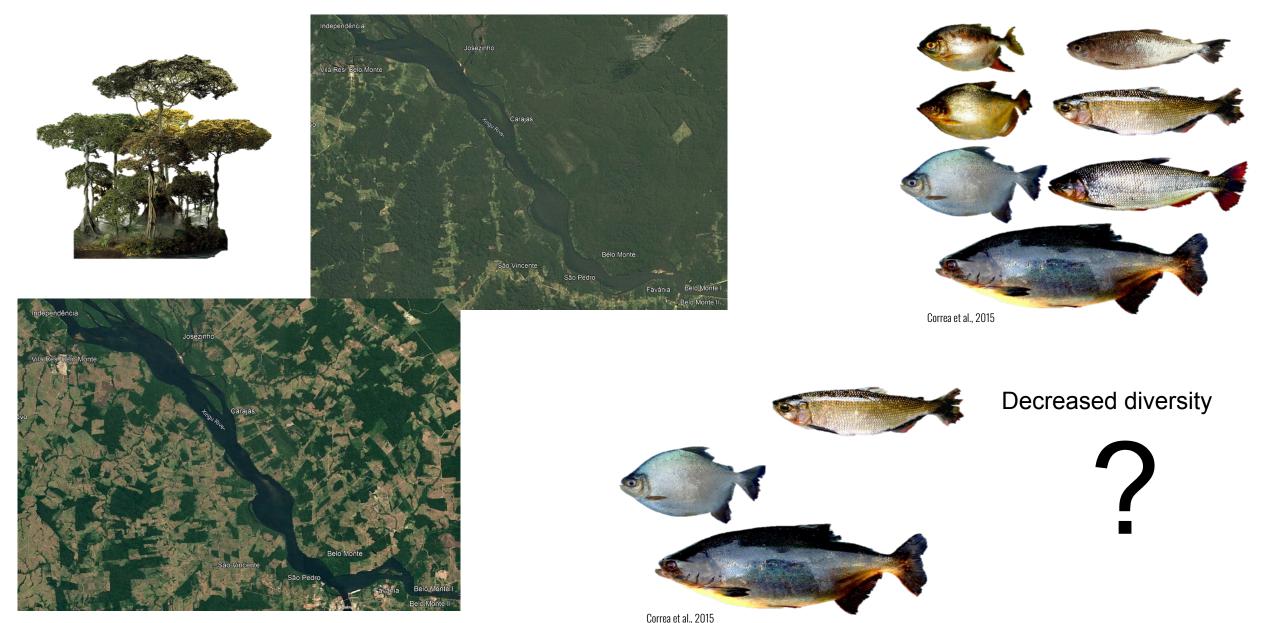
- Permanent &/or seasonal habitat for
- arboreal fauna
- Permanent habitat for flora

Floodplain Lake

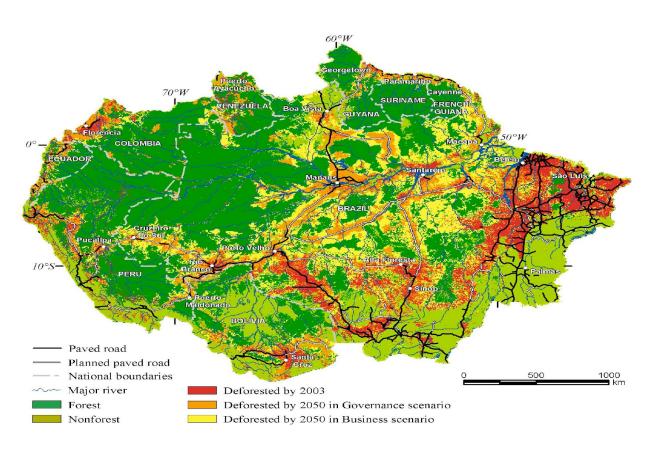

- Lentic habitat
- Lateral connectivity
- Permanent &/or seasonal habitat for adult & juvenile fishes
- Predator/prey dynamics

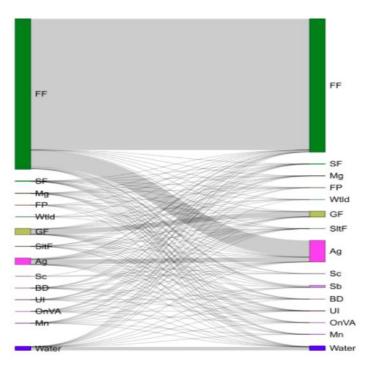

Correa et al. 2022 – BioScience





- 1. How recent land-use changes have affected the frugivorous fish diversity? (WP1)
- 2. Will future climate, land-use, and river fragmentation changes in the Amazon affect the availability of suitable areas for frugivorous fish species? (WP2 & WP3)
- 3. How these expected shifts in the distribution of frugivorous fish species will affect fishing communities and their traditional fishing grounds? (WP4)

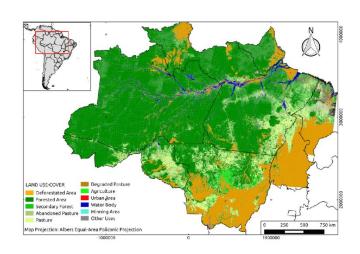

WP1 - The fundamental link between forest and frugivorous fish

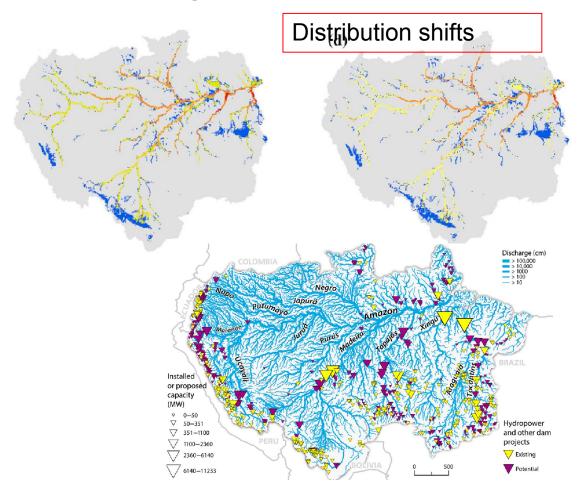


WP2: Future scenarios linking land-use change, landscape patterns, and ecosystem services

Amazon Land Use Land Cover Intensity Analysis

Explore land use transitions from a coupled human-environmental system to produce future quantitative and qualitative scenarios of land use





WP3: Priority areas for conservation and restoration

Select, map and rank priority areas for conservation of frugivorous fish species

Integrating climatically suitable conditions, with land use changes and connectivity within water/forest network

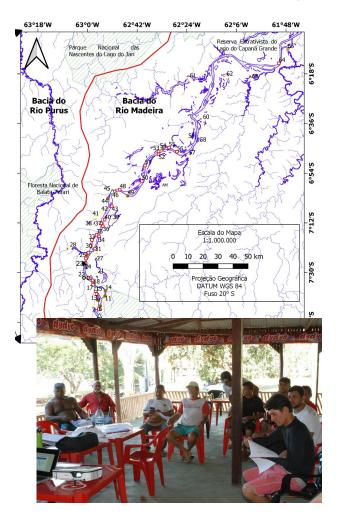
WP4 - Participatory land use planning: a protocol involving stakeholders

Main societal challenge

Contribute to a successful mitigation of the current and future changes in the fishing resource

...and policy issue

Build a protocol that guides public policy and decision makers to design **Fishery** agreements and land use planning



a participatory instrument that associates fisheries and land use in communal rules, based on scientific and traditional knowledge

Participatory workshops with identified stakeholders:

- Two Brazilian Partners as stakeholders (CEMADEN & NGO Ecoporé)
- Representatives and leaders of local communities
- State and Federal agencies, local associations and schools

A focus on The Madeira / Purus interfluvial region

Funding agencies

Self-financed partners

Project mpa4sustainability

Enhancing the role of MPAs in restoring biodiversity while maintaining access to ecosystem services

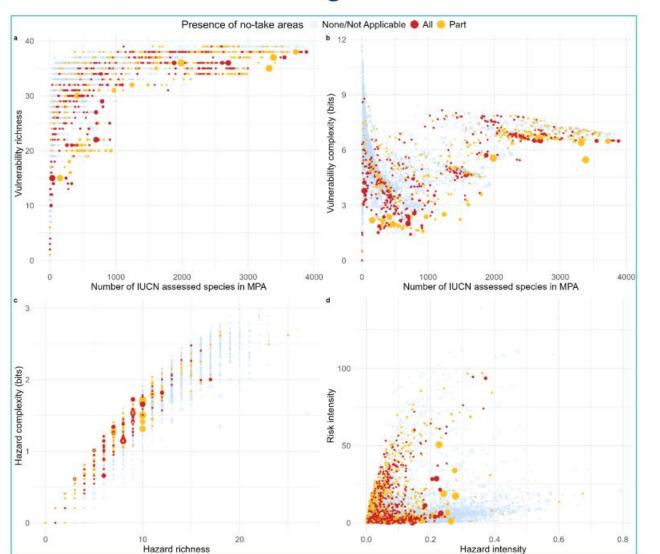
By David Lusseau

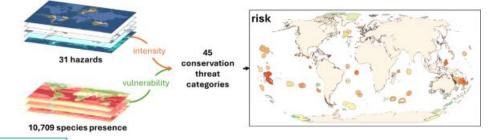
P1 (DNK): Technical University of Denmark, Denmark, David Lusseau

P2 (FRA): CNRS, France, Serge Planes

P3 (SWE): Swedish University of Agricultural Sciences, Sweden, Lena Bergström

P4 (PRT): Madeira Whale Museum, Portugal, Luis Freitas


P5 (ESP): CSIC, Spain, Sergi Valverde


P6 (ESP): Centre de Recerca Matemàtica, Spain, Josep Sardanyés

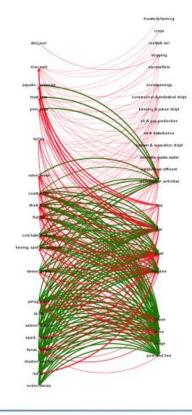
mpa4sustainability

MPAs – Global insight

5.6 in

5.2

4.8

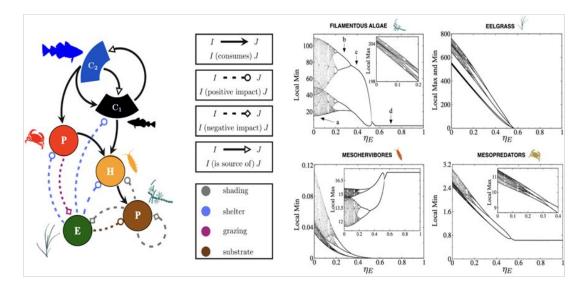

4.4

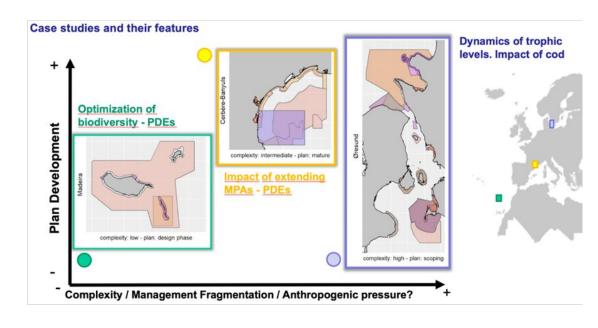
Ia Ib II III IV V VI IUCN Protected Area category

0.80

6.75

removing fishing can increase risk in socioecologically complex MPAs



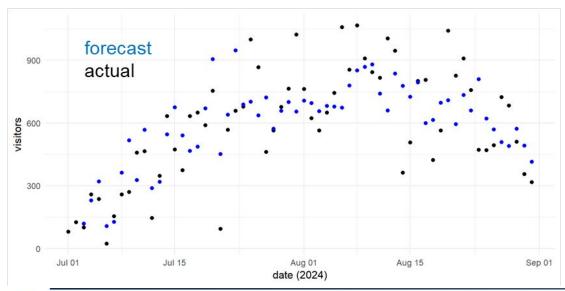

Conservation and restoration of degraded ecosystems and their biodiversity, including a focus on aquatic systems

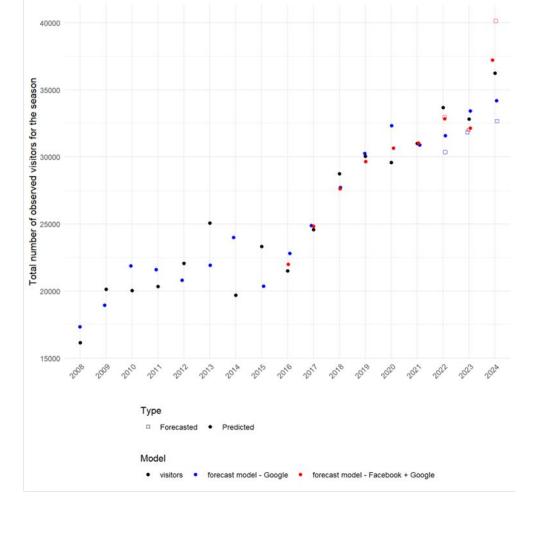
mathematicians – ecologists - managers

We can gain meaningful insights from first principles based on models co-created with managers and ecologists

Take care of habitat to recover cod

Scoping reef that MPA designation





The AI & social media rollercoaster

Google Trends + Wikipedia proving consistent informative source of tourism intentions

For the Banyuls reserve: we can forecast annual visitation before the season and have a two-day forecast for daily visitation within the season using Google Trends

Conclusion

People and nature have complex relationships – acting on one species/one activity can backfire

Consider hazards integratively

eDNA cheap and useful for monitoring, online behaviour translate in forecast for tourism management

Use Ecosystem-based biodiversity management

REMOVE DISEASE

Conservation and restoration of degraded insular biodiversity: removal of introduced mammals and dynamics of infectious diseases in seabirds across islands of the Southern Ocean

By Thierry BOULINIER, CEFE CNRS Université Montpellier, France

Consortium:

Paulo CATRY, MARE, Lisboa, Portugal

Maelle CONNAN, Nelson Mandela University, South Africa

+ 4 stakeholders (Nature Reserve managers, NGO)

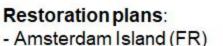
Objectives and main challenges

Remove Disease

Aim: determine if removing introduced mammal species from islands provides indirect benefits via effects on the dynamics of infectious diseases

Context:

- Introduced mammal species = major threat to biodiversity/seabirds on islands
- Restoration efforts via removal of introduced mammal species



Brown rats

Albatross chick

Objectives and main challenges

Aim: determine if removing introduced mammal species from islands provides indirect benefits via effects on the dynamics of infectious diseases

Context:

- Introduced mammal species = major threat to biodiversity/seabirds on islands
- Restoration efforts via removal of introduced mammal species
- Infectious diseases = neglected threat to densely breeding species
 - E.g., **Avian cholera** killing each year thousands of nestling albatrosses on Amsterdam Island or **High Pathogenicity Avian Influenza** in seabirds

- Introduced species and infectious disease dynamics?
- Removing introduced mammals \rightarrow extra benefit to biodiversity conservation via effects on disease dynamics?

Challenges:

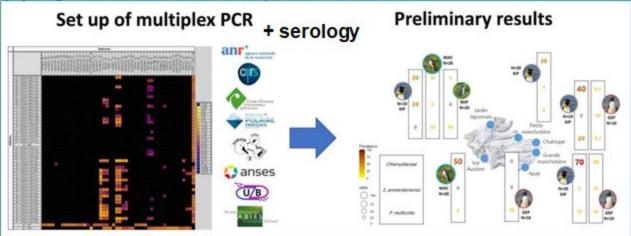
(1) Infectious diseases in space and time

(2) Test of predictions / restauration plans

Collaboration, coordination

 Coordinated field sampling (>5 islands, >15 species)

- Coordinated laboratory analyses
- Synergies with the development of disease surveillance projects and the implementation of restauration plans

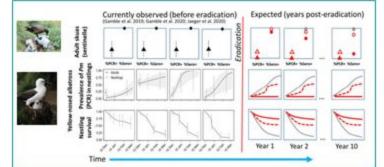


Scientific results

(1) Infectious diseases in space and time

Skua GPS-UHF tracking and Pm PCR & serology of breeders & non-breeders

Lamb et al. 2023 Functional Ecology



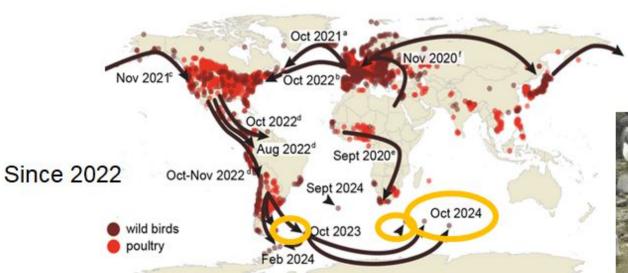

Densely breeding and sentinel species + introduced species

(2) Test of predictions / restauration plans

Bralet et al. J Anim Ecology 2025

June 2024

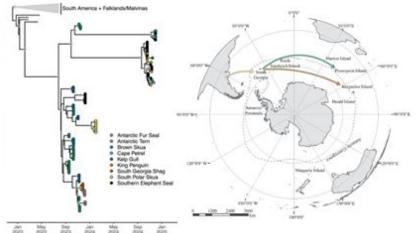
BiodivRestore ERA-NET COFUND


Conservation and restoration of degraded ecosystems and their biodiversity, including a focus on aquatic systems

1st unexpected challenge

Remove Disease

Panzootic of High Pathogenicity Avian Influenza

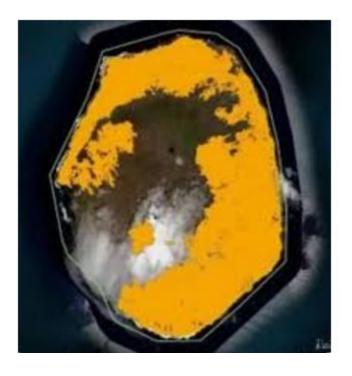

nature communications

Article Open access Published: 29 September 2025

Circumpolar spread of avian influenza H5N1 to southern Indian Ocean islands

Bralet, Briand... Boulinier, 2025

→ Threat to biodiversity, need for practical responses

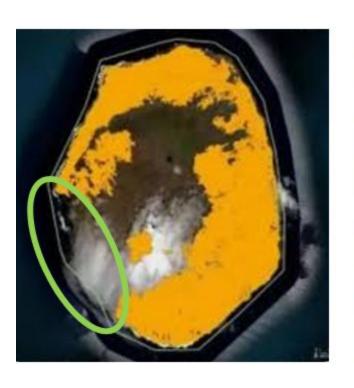


2nd unexpected challenge

Fire on Amsterdam Island in January 2025

BiodivRestore ERA-NET COFUND

→ Full evacuation of the island



- Infectious diseases are important to consider when restauring insular ecosystems
- Benefit of coordinated work (multi-sites, multi-species) at broad scales
- Final results expected soon
- Stress the benefits of integrated approaches/restauration as quasiexperiment

Roundtable discussion with the project coordinators

Moderated by Dirk Schmeller (FishME project)

Anu Lähteenmäki-Uutela (BIO-TRADE), Metodi Sotirov (BIOCONSENT), Pavel Saska (FRESHH), Edivando Vitor do Couto (ForestFisher), David Lusseau (MPA4sustainability), Thierry Boulinier (REMOVE DISEASE)

Roundtable discussion with the project coordinators

Moderated by Dirk Schmeller (FishME project)

Anu Lähteenmäki-Uutela (BIO-TRADE), Metodi Sotirov (BIOCONSENT), Pavel Saska (FRESHH), Edivando Vitor do Couto (ForestFisher), David Lusseau (MPA4sustainability), Thierry Boulinier (REMOVE_DISEASE)

Q&A session

30 min break

Please be back at 11:05

