Ecoacoustic approaches for monitoring sites, habitats and species

Dr Carlos Abrahams

ce

Monitoring & new technologies

Home About us

Action areas Rese

Research funding Actional

Actionable knowledge Engagement

Resources

What are our actions in the field?

EUROPEAN PARTNERSHIP

Biodiversa+ survey towards a roadmap on biodiversity monitoring novel technologies and approaches

Ramilo-Henry et al. (2024) Developing and deploying new technologies for biodiversity monitoring. in Biodiversa+. Biodiversa+ report. 29 + 34 p. URL: https://www.biodiversa.eu/

Bioacoustics

Fig. 3. Percentage of respondents from our survey that monitor the above taxa with novel bioacoustics methods and their level of deployment.

Soundscape Biodiversity Monitoring

$\mathsf{RESEARCH\ THEORY} \to \mathsf{APPLIED\ PRACTICE}$

bak

Not including marine guidance or academic papers!

Bat Conservation Trust 矜

Bat Surveys for Professional Ecologists

Good Practice Guidelines

Bat Conservation Th

Bat Surveys fo

Good Practice Guideli

Bat Su Professional Ecologis

Good Practice

UK Bats – 1989-2004, 2009, 2012, 2016, 2023 EuroBats - 2010, 2014, 2017

Increasing reliance on evidence... and PAM

Table 8.3. Minimum recommended number of repeats for activity surveys.				
Survey type	Low suitability habitat for bats ^a	Moderate suitability habitat for bats	High suitability habitat for bats	
NBW	One survey visit ^b per season (sp September/October) ^c . Further so surveys, reveal activity of interes	ring – April/May, summer – June/ urveys may be required if these vis st that requires more observation	/July/August, autumn – sits, or the results of static detector on site.	
Automated/static bat detector surveys ^d The same locations	Data to be collected for a minimum of five consecutive nights per season (spring – April/May	Data to be collected for a minimum of five consecutive nights per month (April to October) ^c in appropriate (or the best available) weather conditions for bats.		
should be used for each survey for comparison.	summer – June/July/ August, autumn – September/October) ^c in appropriate (or the best available) weather conditions for bats.	• The Technical debated the of recommended bearing in min writing and efj	Review Board for this 4th edition ngoing use of transects (which wer ' as standard in the 3rd edition), d prevailing practice at the time of ficacy in relation to cost.	
		There are a nu survey method	mber of papers comparing differents. Is. Many suggest that <mark>static survey</mark>	

survey methods. Many suggest that static surveys are more effective (Stahlschimidt and Bruhl (2012), Braun de Torrezet al.(2017) and Teetset al. (2019), whilst others conclude that a combination of methods is important (Perks and Goodenough(2021).

Feature Article: Bird Bioacoustic Surveys – Developing a Standard Protocol

2018

Figure 1. Bird vocalisations can be recorded to identify presence/ absence, assess sites, and understand aspects of ecology. Photo credit Ryk Naves on Unsplash.

Bird Bioacoustic Surveys – Developing a Standard Protocol

2023

Acoustic bird surveys

Why use acoustic survey methods?

The characteristic songs and calls of birds can be readily captured in the field using automated or handheld sound recording systems. This information can then be used to determine factors such as species presence, population levels and behaviour. Handheld or *focal* recording allows audio data to be gathered for targeted birds by an observer present in the field, while automated or *passive acoustic monitoring* equipment can be programmed to remotely capture long-term data from a fixed location over weeks or months. The audio files recorded with either method can be listened to by ornithologists or analysed using a range of machine learning techniques to generate high quality ecological data. The automated acoustic methods set out below, like the standard survey methods within the main body of this guidance, seek to measure the avian diversity and the species present within an area, allowing the potential impacts of a project proposal to be assessed.

Woy one - mile one-

Integrating googing and so that is uncertained in

Reptricted on the report of the

_ may limit .

Pre-space planter

Andro remm

A address on A

ECOLOGYDEVELOPMENTINNOVATION

Ecoacoustic Bird Surveys: Comparison with traditional survey methods

White Paper September 2023

Carlos Abrahams, James Longley, Oliver Metcalf

ECOLOGYDEVELOPMENTINNOVATION

Ecoacoustic Bird Surveys: Comparison with traditional survey methods

White Paper September 2023

Carlos Abrahams, James Longley, Oliver Metcalf

Table 1. Priority bird species only detected by ecoacoustic bird surveys

Site	Species detected only by ecoacoustic bird surveys
	Red/amber=status in Birds of Conservation Concern 5, black=Schedule 1 of the Wildlife and Countryside Act 1981
Derbyshire 1	Barn Owl, Grey Wagtail, Hawfinch, Lapwing, Lesser Redpoll, Linnet, Mallard, Mistle Thrush, Oystercatcher, Stock Dove, Teal, Whitethroat
Derbyshire 2	None
Herts	Firecrest, Hawfinch, House Sparrow, Lesser Spotted Woodpecker, Meadow Pipit, Mistle Thrush, Redwing, Tree Pipit,
Neath	Barn Owl, Great Black-backed Gull, Lapwing, Lesser Redpoll, Oystercatcher, Snipe, Teal
Norfolk	Black-headed Gull, Common Sandpiper, Curlew, House Martin, House Sparrow, Meadow Pipit, Oystercatcher
Oxon	Bullfinch, Herring Gull, Kestrel, Meadow Pipit, Mistle Thrush, Moorhen, Reed Bunting, Spotted Flycatcher
Warks	Greenfinch, Herring Gull, Linnet, Swift
West Yorkshire 1	Barn Owl, Great Black-backed Gull, Grey Wagtail, Moorhen, Teal, Tree Pipit
West Yorkshire 2	Common Sandpiper, Greenfinch, Grey Wagtail, Lapwing, Moorhen, Redwing, Starling, Stock Dove, Tree Pipit, Whitethroat

https://www.britishecologicalsociety.org/applied-e cology-resources/document/20230445463/

TEMPORAL PATTERNS

SPATIAL PATTERNS

SPATIAL PATTERNS

DOI: 10.1002/ece3.7585

ORIGINAL RESEARCH

WILEY

Pond Acoustic Sampling Scheme: A draft protocol for rapid acoustic data collection in small waterbodies

Carlos Abrahams^{1,2}

Camille Desjonquères³ | Jack Greenhalgh⁴

¹Baker Consultants Ltd, Matlock, UK

²Nottingham Trent University, Nottingham, UK

³Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

⁴School of Biological Sciences, University of Bristol, Bristol, UK

Correspondence

Carlos Abrahams, Baker Consultants Ltd, West Platform, Cromford Station, Cromford Bridge, Matlock, Derbyshire, DE4 5JJ, UK. Email: carlos.abrahams@ntu.ac.uk

Abstract

- 1. Freshwater conservation is vital to the maintenance of global biodiversity. Ponds are a critical, yet often under-recognized, part of this, contributing to overall ecosystem functioning and diversity. They provide habitats for a range of aquatic, terrestrial, and amphibious life, often including rare and declining species.
- 2. Effective, rapid, and accessible survey methods are needed to enable evidencebased conservation action, but freshwater taxa are often viewed as "difficult"and few specialist surveyors are available. Datasets on ponds are therefore limited in their spatiotemporal coverage.
- 3. With the advent of new recording technologies, acoustic survey methods are becoming increasingly available to researchers, citizen scientists, and conservation practitioners. They can be an effective and noninvasive approach for gathering data on target species, assemblages, and environmental variables. However, freshwater applications are lagging behind those in terrestrial and marine spheres, and as an emergent method, research studies have employed a multitude of different sampling protocols.

Summary of scoring system

SI, Location Field score SI A (optimal) I B (marginal) 0.5 C (unsuitable) 0.01

SI₂ Pond area

Field score Measure pond surface area (m²) and round to

SI, Pond drying

, , ,					
SI	Criteria				
0.9	Never dries				
1.0	Dries no more				
0.5	Dries between				
0.1	Dries annually				
	SI 0.9 1.0 0.5 0.1				

SI, Water quality

Field score	SI	Criteria
Good	1.0	Abundant and
Moderate	0.67	Moderate inve
Poor	0.33	Low invertebra
Bad	0.01	Clearly pollute

SI; Shade

Field score

Estimate percentage perimeter shaded to a le

SI₆ Fowl

Field score	SI	Criteria	
Absent	1	No evidence o	
Minor	0.67	Waterfowl pre	
Major	0.01 Severe impac		
SI, Fish			
Category	SI	Criteria	
Absent	1	No records of	
Possible	0.67	No evidence o	
Minor	0.33 Small numbers		
Major	0.01	0.01 Dense populat	

SI₈ Pond count

Field score

Count the number of ponds within 1 km of t barriers) and divide by 3.14. This can be don

SI, Terrestrial habitat

Category	SI	
Good	1	
Moderate	0.67	
Poor	0.33	
None	0.01	

SI 10 Macrophytes

Field score

Estimate the percentage of the pond surface (between May and the end of September)

Monitoring Biodiversity Net Gain: Potential Contributions from Ecoacoustics

Legal requirement for 30yrs management & monitoring – including habitat 'condition' We recommend that good practice monitoring of BNG schemes accepts multiples lines of biodiversity evidence, including more detailed species assessments alongside habitat mapping.

Observer bias in habitat mapping...

С

Е

- Unimproved acid grassland
- Semi-improved acid grassland
- Semi-improved neutral grassland
- Marshy grassland
- Door semi-improved grassland
- Bracken
- Dry acid dwarf shrub heath Wet acid dwarf shrub heath
- Dry dwarf shrub heath/acid grass mosaic

- F
- Wet dwarf shrub heath/acid grass mosaic
- Wet modified bog
- Dry modified bog
- Acid/Neutral flush Acid/Neutral rock exposure
- Quarry
- Built (buildings, metalled roads etc.)

Cherrill & McLean (1999)

ACOUSTIC INDICES

Time of Day

Maeder M, Guo X, Neff F, Schneider Mathis D, Gossner MM (2022) Temporal and spatial dynamics in soil acoustics and their relation to soil animal diversity. PLoS ONE 17(3): e0263618. https://doi.org/10.1371/journal.pone.0263618

Audiomoth2 Hydromoth 80 60 40 20 0 SAQI Micro0152 Micro1693 80 60 40 20 0. 00:00:00 20:00:00 00:00:00 10:00:00 10:00:00 20:00:00 Time Recording protocol = 1 minute in 10

Soil statics over 11 days in October: SAQI thru 24hr cycle

FARMING INNOVATION PROGRAMME

CONSERVATION TECHNOLOGY

Good practice guidelines for long-term ecoacoustic monitoring in the UK

With a particular focus on terrestrial biodiversity at the human-audible frequency range

Passive acoustic monitoring in ecology and conservation

Ella Browning, Rory Gibb, Paul Glover-Kapfer & Kate E. Jones. 2017. WWF Conservation Technology Series 1(2). WWF-UK, Woking, United Kingdom.

https://www.wwf.org.uk/project/conservationtechnology/acoustic-m onitoring

https://www.britishecologicalsociety.org/applied-ecology-resources /document/20230136742/

Acoustics in the Automated Biodiversity Monitoring Stations (ABMS) pilot

Jamie Alison, Jarek Scanferla & Toke Thomas Høye

Rationale for the ABMS

Alarming trends in nature, but obscured by spatial, temporal and taxonomic bias

- ✓ We need **scalable** solutions...
- ✓ ... that operate continuously...
- ... that are highly standardized.
- Does the hype of automation and AI convert to useful data under pressure and across borders?

Besson et al. (2023) Ecology Letters

Creating a sensor-based monitoring scheme

Creating a sensor-based monitoring scheme

What sensors?

- Birds, bats & nocturnal insects
- Available, established & reliable
- ✓ Off-grid & portable
- Maintained at most once a month

AMI system TOMST logger Song Meter Mini 2

What sensors?

What sensors?

Creating a sensor-based monitoring scheme

Where to put them?

 Forest, grassland & wetland Vatura 2000 sites

Nested sampling design

Aligned with 100m sampling grid

Min 2km between any two locations in different sites. No maximum

Aligned with 100m grid?

Where to put them?

- · 13 partners
- · 3 sites per partner
- 1 AMI trap + 2 sets of Song Meters per site
 - = 39 AMI systems
 - = 156 Song Meters

Creating a sensor-based monitoring scheme

When & how to record?

Maximum temporal resolutionContinuous (or representative)

Parameter	Audible Ultrasound		
Use triggering	No	Yes (bats, 3 seconds)	
Max recording length	1 minute	15 seconds	
Schedule	1 minute in 5	Continuous triggered	
Recording window	Continuous	Dusk -1h to dawn +1h	
Sample rate	48kHz	256kHz	

✓ Standard protocol

Triggered recording (with caution)

Short season in 2024 – still 260,000 recordings per active partner

Good practice guidelines for long-term ecoacoustic monitoring in the UK

With a particular focus on terrestrial biodiversity at the human-audible frequency range

Metcalf et al. (2022) UK Acoustics Network

Creating a sensor-based monitoring scheme

How to manage data?

- Manual retrieval (SD/SSD)
- SFTP transfer to DK database

data

Retain local copies

General trends and indicators

Transnational scale

- Deployment metadata
- ... linked to location metadata and file IDs
- Metadata fields named to match standards

Silva del Pozo *et al.* (2022) Guide on harmonising biodiversity monitoring protocols across scales. *Biodiversa+ report*

30.1%

Credit Asger Svenning: The flatbug model for insect detection

Creating a sensor-based monitoring scheme

How to process data?

Models must be available
 Accurate (at least well evaluated)
 With error! The work is not over.

BirdNET

Batdetect2

Dealing with classification error:

- Understand the model's weaknesses
- Aggregate taxa if meaningful
- Confidence-based post-processing
- Validation for your use case

Creating a sensor-based monitoring scheme

Creating a sensor-based monitoring scheme

How to validate data?

Correct for false positives & bias
 Generate useful training data

Birds at Bolzano ABMS stations, 2024 Processed by Jarek Scanferla

Site	Unfiltered detections	Unfiltered species	Confidence > 0.2	Confidence > 0.5	Confidence > 0.9	Confidence > 0.9 Detections > 5
Grassland	20778	205	171	109	42	20
Wetland	30395	204	174	106	47	24
Forest	56061	160	128	87	42	27

Strategic & systematic False negatives also crucial

WillowTit

Wood & Kahl (2024) Journal of Ornithology

Take home messages

✓ At scale, availability of standardized equipment is crucial

- "Old" challenges of systematic monitoring and site selection are still extremely relevant for sensors, if not more
- Centralized data processing may be a good model, if supported by local data processing case studies
- ✓ Data processing does not end with AI (yet!)

Thank you!

Biodiversa+ partners in ABMS pilot

Country	Organization	Role
Germany	Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz,	Active partner
Italy - South Tyrol	Eurac Research	Active partner
Spain	<u>Departament d'Acció Climàtica, Alimentació i Agenda Rural</u>	Active partner
Bulgaria	Executive Environment Agency	Active partner
Croatia	Ministry of Economy and Sustainable Development	Active partner
Denmark	Ministry of Environment of Denmark	Active partner
Finland	Ministry of the Environment	Active partner
Czech Republic	Národní klastrová asociace	Active partner
Republic of Ireland	National Parks & Wildlife Service	Active partner
Netherlands	The Dutch Research Council	Active partner
Slovakia	Slovak Academy of Sciences	Active partner
Sweden	Swedish Environmental Protection Agency	Active partner
Belgium	Vlaams gewest / Flemish region	Active partner
Georgia		Advisor
Moldova		Advisor
Norway		Advisor
France		Advisor

www.biodiversa.eu