

RESIPATH: Responses of European Forests and Society to Invasive Pathogens

Jonàs Oliva, Johanna Boberg and Jan Stenlid (coord. team) Dept. Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences

Participants

Sweden (coord.) Norway (2) Germany (1) Belgium (2) France (3) Portugal (1) Austria (1) Bulgaria (1) Turkey (1) Spain (1)*

2014-2016

Budget: 3 815 105 €

Invasive species threat European forests

Exponential increase of invasive forest pest and pathogens in EU (Santini et al. 2013)

Objectives of the call

Themes

T1: Demonstrating and characterising the impacts

T2: Understanding mechanisms and levers for mitigating and/or reversing the impacts

T4: Biological invasions and publication

T5: Biological invasions and adaptation

Workpackages

- WP1: Sustainability of forest populations under attack
 - **WP2**: Adaptation of trees to novel forest pathogens
 - WP3: Mechanisms of hybridisation
 - **WP4**: Detection and monitoring
 - WP5: Social perception of forest invaders

Demonstrating and characterising the impacts (T1)

Tree mortality and sustainability (WP1)

Monetary estimation of impact

Beyond adaptation (T5)

Can we predict the likelihood of adaptation?

Timing of mortality

Ash dieback

Mortality affecting young trees

Dutch elm disease

Mortality affecting adult trees

Powdery mildew in Oak

Mortality affecting very young trees

Alder Phytophthora

Mortality affecting middle sized trees

Mechanisms of hybridisation (WP4)

Pathogens need to infect to mate

Mechanisms of hybridisation (WP4)

Frequency of hybrid isolates:

Nurseries > Rivers > Forests

Molecular detection of hybrids

Early detection targeting pathways (WP4)

- Passive trap
- Cyclonic trap
- Ionic trap
- Filter paper

Social perception (WP5)

Social perception (WP5)

Output

- Mortality threshold to predict changes in current structure
- Costs of invader to society
- Do we need to start a resistance breeding program?
- Are nurseries a threat?
- Is it feasible to establish early detection systems?
- What is the social perception of tree mortality?