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What | plan to talk about

- The need to harness the power of plant-
microbe interactions

- Plant abilities to cultivate a functional
microbiome

- Defining the rules of rhizosphere
microbiome community assembly



Acknowledgements

Uu

Amber Heijboer
Simone Weidner
Tianjie Yang
Alexandre Jousset
Joost Keuskamp
Jie Hu, Xiong Wu
Peter Veenhuizen .
Mohammad Ravanbakhsh NAU

Zhilei Gao Zhong Wei
Rong Li/ Jun Yuan
NIOO Qirong Shen
Alexandra Wolf (lowa. St. U.)
Sarah Jennings (NZ) James Weedon (VU-Amsterdam) ‘ /

Barbara Drigo (U. Adelaide) Rien Aerts (VU-Amsterdam)
Sigrid Dassen Gerlinde de Deyn (WUR)

/
Michiel Vos (U Exeter) Peter de Ruiter (UvA) - ACNP
Wietse de Boer m
Mattias de Hollander : )
Eiko Kuramae N WO
Wim van der Putten Nederlandse Organisatie voor Wetenschappelijk Onderzoek Rverari
Agata Pijl, Hans van Veen




The increase in food production, especially in

developing nations, through the introduction

of high-yield crop varieties and application
of modern agricultural techniques
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The green revolution allows us
to live beyond our means

:

Climate change
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Steffen et al Science (2015)



e High amounts of energy (and water) input

e Further disruption of Earth’s nutrient
balance (especially for Nitrogen)

e Reliance on depleting Phosphate reserves
(probably less than 50 years)

e Depletion of soil fertility & soil degradation
e Loss of biodiversity
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How do we feed the planet without
destroying it?

- preserving soils
- using plant-microbe interactions
- unlocking the genetics of plants

e ,
2nd greenrevolution




Improving soil quality

* Breeding to date has served to eliminate reliance on plant-
microbe interactions and foster cheating



Challenges to taming the soil

microbiome
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Plants as drivers of their
functional microbiome

* The plant rhizosphere effect
 Cultivating a beneficial rhizosphere community

* |nitial microbiome predicts later health



Experiment to examine rhizosphere effect of
specific plant species:

X = Cynaglossum
officinale

O = Cirsium
vulgare

= natural
colonisation

Seven plants per plot (with weeds)
Three harvests times



Influence of plant species on rhizosphere communities:

Harvest #1 ] c ylarvesé #2 - Harvesé #3 -
C. vulg C. offi - vulg - offi C. vulg . offi

- Plants select for
distinct bacterial
populations

- Plant-specific
patterns maintained
over growing season

- All bulk samples look
alike

- Sequence ID of
dominant bands

Kowalchuk et al 2002



Cultivating a beneficial rhizosphere community
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Years monoculture wheat

Berensen et al 2013
TRENDS in Plant Science

and soils can be conditioned by growing multiple plant generations



Cultivating beneficial rhizospheres in response to
an aboveground pathogen

— SiX
generations
in same soil
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Microbes modulate
plant hormones along
a stress defense /
growth continuum

2
h

15 -

Diseaseincidence (%o)
I
o

Ravanbakhsh et al
ISMEJ 2019

[a—
<o
|

h

(] ,
Control soil Conditioned soil

Yuan et al Microbiome (2018)



Cultivating beneficial rhizospheres in response to
an aboveground pathogen
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Soil memory via the microbiome
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The Soil-Bourne
Legacy
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Bringing microbial assembly into focus

defining some rules of microbial community assembly

We can borrow concepts from macro-ecology, such as:



Bringing microbial assembly into focus

defining some rules of microbial community assembly

We can borrow concepts from macro-ecology, such as:

 Priority effects, succession and facilitation
* Niche overlap and competition

« Keystone species

« Trophic interactions

« Habitat connectivity, stochastic processes and neutrality



Multi-species inoculation improves
disease resistance

4 species 5species . Control

Wei, Yang, et al Nature Comms (2015)



Studying assembly in artificial
communities

A: Trophic network architecture B: Probability of pathogen invasion o ree
i" Communities |
assembled with
defined structure
(without direct
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Interactions between species traits
and nutrient availability
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High nutrient availability = Growth rate
Diversity / function relationship

Low nutrient availability = Niche overlap
Relative disease suppression

modulated by nutrient status
Yang et al Environ Microbiol. 2017



Impacts of bioorganic
fertilizer on soil microbiomes

Goal: Decrease chemical fertilizer
use while also reducing
disease (Fusarium wilt)

Four treatments:

- Chemical fertilizer (CF)

- Organic fertilizer (OF)

- Bio-organic fertilizer with
Bacillus inoculation (B-BIO)

- Bio-organic fertilizer with
Trichoderma inoculation (F-BIO)

50 60 70

Disease incidence (%)
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Wu et al SBB (2017)



Impact of fertilizer
treatment on bacterial
& fungal communities

 Bacterial and fungal
communities distinct
for different fertilizer

treatments

* CF treatment most
distinct

Wu et al SBB (2017)
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Relation between biocontrol populations and
disease-causing agent
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Disease suppression not related to density of biocontrol organisms,
but rather other stimulated organisms (e.g. Lysobacter)



Impact of fertilizer treatment on
protist communities

Fs=1.93, P<0.001
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CF treatment more related to pathogens Wu et al ISME

Others to omnivores, bacterivores & phototrophs Journal (2018)




Biological agents act indirectly

Inoculated bio-control agents,
e.g., Bacillus and Trichoderma

Bio-fertilizer Bacterial abundance and structure Fusarium pathogen density

Induced indigenous antagonistic
microbes, e.g., Lysobacter

* New strategy: develop inocula that activate resident
communities

* Protists as dynamic hubs in the soil microbiome

 Increase in negative interactions (soil health = war)

Wu et al ISME Journal (2018); Wu et al SBB (2019)



Utilizing Protists: Puppet masters of
the rhizosphere

(A) Turover
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Gao et al, Trends in Plant Sci. 2018



Bringing microbial assembly into focus

defining some rules of microbial community assembly

We can borrow concepts from macro-ecology, such as:

Priority effects, succession and facilitation

Niche overlap and competition

Keystone species

Trophic interactions

Habitat connectivity, stochastic processes and neutrality



Microbial diversity from a microbial
perspective

To date we have
generally considered
scales of convenience
as opposed to those
most appropriate to the
microbial organisms
themselves
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Community assembly after dilution

and re-inoculation

natural soil
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Serial dilution as a means of
reducing bacterial diversity to I
examine diversity/function =

relationship 10-1 103 105

Hol et al Ecol Let 2010; Kuramae et al AEM 2015
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Effect of serial dilution on species richness
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(1.5 * 10%) Weidner, Keuskamp et al, submitted



Selection of microbial growth
strategies upon re-inoculation

Higher dilution selects for:
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Spatial distribution and modeling

yield versus growth communities

Growth (®) versus yield (®) strategists
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« As dilution increases, competition is decreased
* Maintains higher species diversity than expected

« Ultimately leads to high yield efficiency community

Weidner, Keuskamp et al. submitted



Dilution breeds yield strategies,
which impacts C retention
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Can we steer microbial growth strategies for
Improved carbon retention?




General take-nome messages

Need to rely on plant-microbe interactions in
future agronomic approaches

Plants can steer their functional microbiome
Need to consider the ecological rules (and

scale) that drive microbial community
assembly and interactions



Thank you
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Most interactions are very local
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Linking the microbiome with
(future) plant health

B Nylon bag with
homogenized
sterilized soil
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Week 4

Weeks after planting

Wei et al Science Advances (2019)




Initial microbiome predetermines
future plant health
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Protist communities best predict
future plant health
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Xiong et al in review



Two complementary approaches

R
m\ the dark side...
.; M «f.h v

Micro-scale examination of microbial diversity

into the light...

E)&perimental manipulation of (artificial) soll

parameters

Lower microhabitat connectivity allows for greater bacterial diversity



