

Integrative Management of Green Infrastructures Multifunctionality, Ecosystem integrity and Ecosystem Services IMAGINE

Philip K. ROCHE (IRSTEA, FR, Coordinator)

Funded projects final conference, 12-13 November 2019, Brussels

BiodivERsA COFUND Call (2015-2016)

« Understanding and managing biodiversity dynamics to improve ecosystem functioning and delivery of ecosystem services in a global change context: the cases of soils and sediments, and land-river and sea-scapes »

CONSORTIUM DESCRIPTION

IMAGINE Consortium: 6 partners from 5 countries

Partner 1 (coordinator): Dr. P. Roche, Irstea, France funded by ANR

- Coordination, connectivity, ecosystem services and ecosystem integrity
- ➢ 4 researchers, 1 PhD, 1 Post-Doc, 1 Engineer

Partner 2 : Pr. M. Külvik, EMU, Estonia funded by ANR via Irstea

- Stakeholder analysis and dissemination
- ➢ 3 researchers
- Partner 3 : Dr. G. de Blust, INBO, Belgium funded by
 - > GI attributes and vulnerabiliy, stakeholders and policy analysis
 - 4 researchers

Partner 4: Pr. Dr. D. Hummel, ISOE, Germany funded by

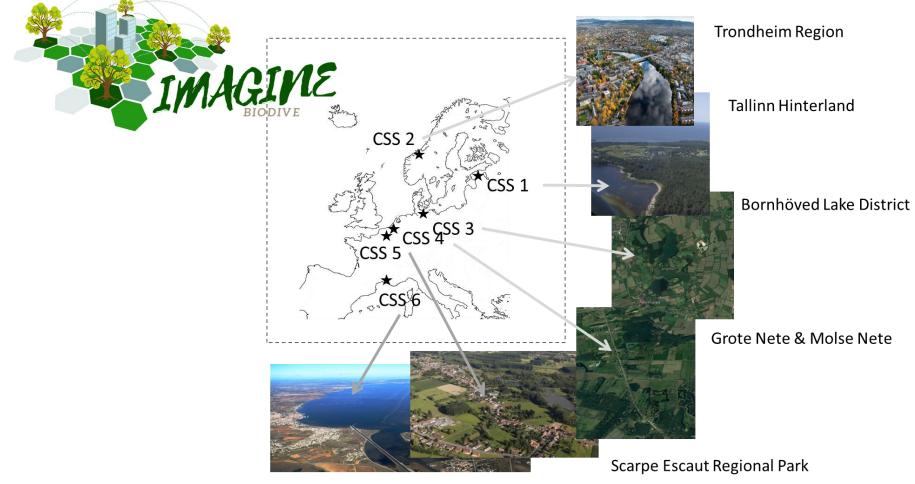
- Societal demand and stakeholders analysis
- 2 researchers, 1 PhD

Partner 5: Pr. Dr. T. Diekötter, Kiel Uni., Germany funded by

- Biological functions and ecosystem services
- 1 researcher, 1 PhD
- Partner 6: Dr. R. May, NINA, Norway funded by
 - Integrative modelling
 - 4 researchers

INSTITUUT NATUUR- EN BOSONDERZOEK

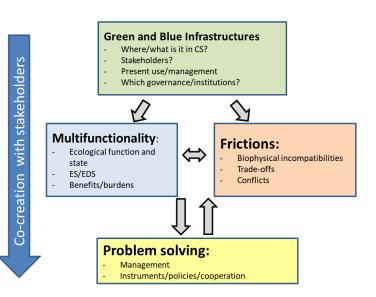
PROJECT DESCRIPTION


quantifying the multiple functions, ecosystem services and benefits provided by Green Infrastructures

- Ecosystem integrity assessment and mapping
- Ecosystem services and disservices assessment and mapping
- Species connectivity modelling
- Stakeholder analysis, societal demand and policy conflicts
- Integrated modelling (BBN and muticriteria modelling)
- **CSS Contact Stakeholders** consulted at all stage of project

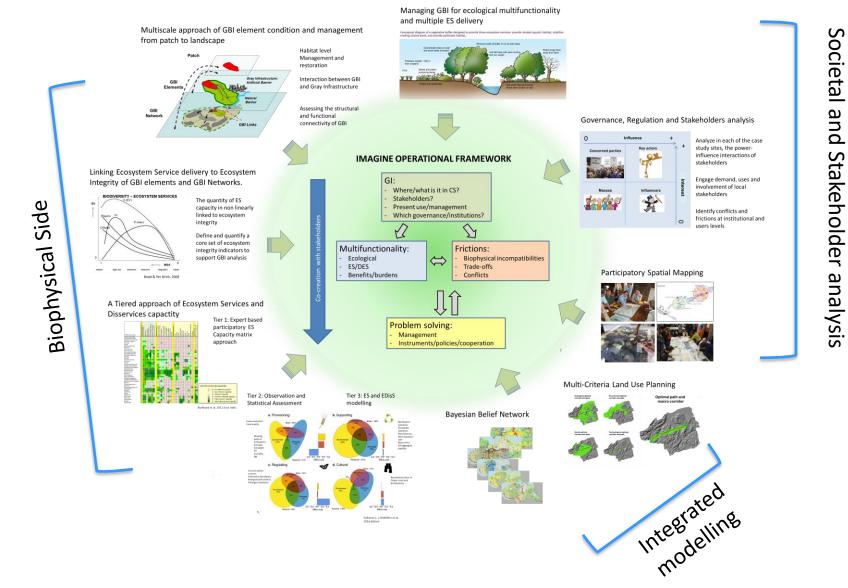
PROJECT DESCRIPTION

Thau lagoon Area


PROJECT DESCRIPTION

IMAGINE aims at quantifying the multiple functions, ecosys-tem services and benefits provided by Green Infrastructures

Operational framework


Case study sites

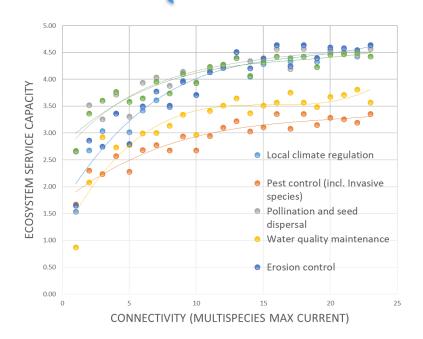
0	Tallinn City Hinterland	~ 4500 km ²
2	Trondheim Region	$\sim 1000 \text{ km}^2$
3	Bornhöved Lake District	~ 60 km ²
4	Grote Nete & Molse Nete	~ 180 km ²
5	PNR de Scarpe-Escaut	$\sim 800 \text{ km}^2$
6	SMBT Etang de Thau	~ 600 km²

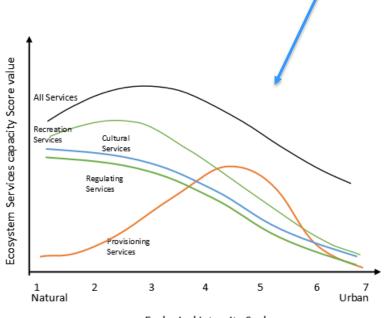
SCIENTIFIC OUTPUTS

SCIENTIFIC OUTPUTS

GI Elements have a higher capacity for all the ES considered excepted «Food production»

Between 1.5 and 2 times more ES capacity in GI Elements




SCIENTIFIC OUTPUTS

ES Capacity is related to GI elements species connectivity

ES Capacity is related to GI elements ecological integrity

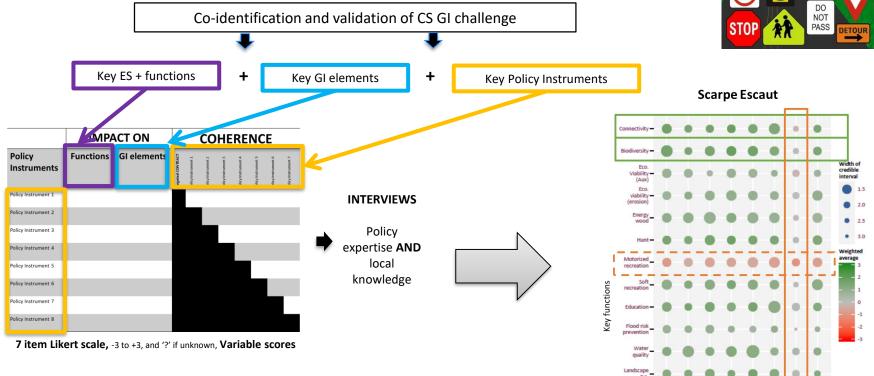
Ecological Integrity Scale

Based on IMAGINE assessments

Based on IMAGINE assessments

SCIENTIFIC OUTPUTS

- GI and more generally natural and semi-natural elements of Landscape are multifunctional
- Multi-species connectivity is positively associated with Ecosystem Service Capacity
- GI elements with the highest connectivity are also those having the highest ES Capacity
- 5 scientific papers published + 3 in-prep
- 5 presentations in conference (ESP, IALE, Alter-NET)
- 6 Imagine Cookbooks (Guidelines for methods)
- 6 meetings in Case Study Sites with local stakeholders (last meeting April 2020)


SCIENTIFIC OUTPUTS

PolCA: Policy Coherence Analysis

Key policy instruments

Local "Let's urban plant

dges o

Nature & Borestation "Let's Erosi

roads subsidies plant

CSS level

- Provide State-of-the-Arts data regarding keys issues proposed by local stakeholders (ES/EDS, GI vulnerability and ecosystem quality, species connectivity, Integrated scoring of multifunctionnality, policy coherence analysis, evaluation of social demand)
- Support to their on-going important issues

Stakeholder analysis (first results)

6 cases: 2 Urban vs 4 Rural contexts (3 concern hedgerows)

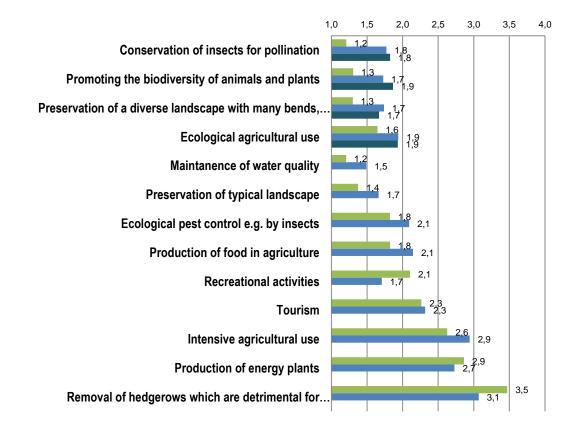
VALUATION:

- Green Infractructure elements highly valued by all stakeholders
- More variation in value of ecosystem services and disservices

FRICTIONs: case-dependent, some paterns:

- Biodiversity & habitats vs Recreation/Production (food or biofuel)
- Biodiversity and regulating services rank high in overall valuation analysis \rightarrow seen as important by all stakeholders

Next steps

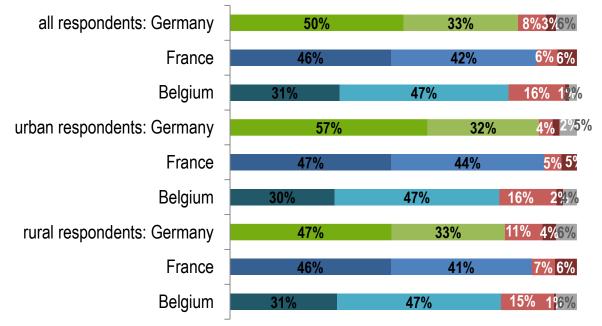

- For Hedgerow cases: Differences in valuation by stakeholder categories?
- Clusters of stakeholders regarding impact, dependence, interest and influence?

Societal Demand: More demand for conservation and regulation services than for intensive agriculture and provisioning services!

Germany France Belgium

Average values: Scale from 1=very important to 4= unimportant

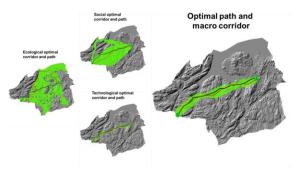
Based on phone survey (300 persons per sites)



- Strong societal demand toward protection of biodiversity
- No evidence of differences between urban and rural respondants
 - 1=clearly for the protection of biodiversity
 - 3=rather for an agricultural use

no response

- 2=rather for the protection of biodiversity
- 4=clearly for an agricultural use



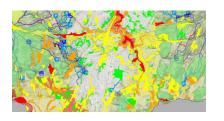
Overall vision

Science

- Strong evidences GI providing large set of ES and connectivity
- Vulnerable with variable ecological quality
- Operational framework and integrated modeling

Policy

- Few policy instruments
 adressing specifically the management of the different GI functions.
- Diffuse regulation


Stakeholders

Green Infractructure elements highly valued

 Opposition between Biodiversity, regulation services and provisioning services or recreation.

Citizens

- Strong societal demand for biodiversity conservation of GI and regulation services
- Agroecology and biodiversity preferred to intensive agriculture trade-offs.

ACKNOWLEDGEMENTS

We thank the stakeholders from the different CSS that were involved in many workshops, interviews, mail exchanges, meetings...

We thank the following funding agencies for supporting our project

- France: Agence Nationale de la Recherche
- Germany: Federal Ministry for Research and Education
- Belgium: The Belgian Science Policy Office
- Norway: The Research Council of Norway

