

FFII

Forecasting Future Invasions and their Impacts

Gloria M. Luque Université Paris Sud XI

Biodiversity is threatened

The rate of species extinction currently exceeds historical rates by 100 to 1000

Western Black Rhino, declared extinct in 2011

A very large part of biodiversity could be lost within this century

Five major drivers of biodiversity loss

Habitat loss

Overexplotation

Biological invasions

Climate change

Pollution

Climate change as a global threat

limate change component

Temperature

Rainfall

Extreme events

CO₂

Ocean dynamics

Genetics

Physiology

Phenology

Dynamics

Distribution

Bodiversity component

Interspecific relationships

Community productivity

Ecosystem services

Biome integrity

Populatioms Species **Ecosystems Communities Biomes**

Organisms

Biological Invasions as a global threat

Considered the second largest threat to biodiversity

It also has a huge impact on economy and society

Will climate change affect biological invasions?

Temperature
Rainfall
Extreme events
CO2
Ocean dynamics

Genetics

What are the **mechanisms** of spread and **impacts**? What are the interactions with global changes?

Populatioms

Species

Ecosystems Communities

Study scales

Model systems

Tenestral plant 30 San Again invertebrate 90 San Again and San Again and

Dynamics

Distribution

Interspecific relationships

Community productivity

Ecosystem services

Methods

Spatial scales

Model systems

Large taxonomical and ecological samples

Impact on biodiversity and human activities

Variety of taxonomic groups, ecosystems, types of impacts

Large potential as an illustration of the various issues associated with invasions

Model systems

Large taxonomical and ecological samples

One relatively taxonomically smaller sample

Ecosystem engineers

20 highly invasive ants

Methods

species distribution models

Theoretical

life-history-trait statistical models

Field

Poum Mt. Mandjélia Néhoué Tièbaghi

Laboratory

Experimental

Spatial scales

Macroecology

Worldwide

2.3 % of the Earth's land surface

34 biodiversity hotspots

Endemic

>50% of the world's plants 42 % of all terrestrial vertebrate

Spatial scales

Macroecology

Finer scale: New Caledonia

High biodiversity

Endemic species

Nouméa Invasive Ants IRD station

Themes

Patterns

Potential species distribution

High risk invasion

Processes

Development meta-analysis characteristics

Experiments
Interspecific interactions

Impacts

Meta-analysis Categorize impacts

Experimentally quantify impacts

Future

Themes

Patterns

Potential species distribution

High risk invasion

Processes

Development meta-analysis characteristics

Experiments
Interspecific interactions

Impacts

Meta-analysis Categorize impacts

Experimentally quantify impacts

Future

Interactions with global change

Climate change Land use

Patterns

Worldwide pattern of invasion

100 OF THE WORLD'S WORST INVASIVE ALIEN SPECIES

A SELECTION FROM THE GLORA

Patterns

100 OF THE WORLD'S WORST INVASIVE ALIEN SPECIES

A SELECTION FROM THE GLOBA

Worldwide pattern of invasion

Bioclimatic models with climatic and land use data

Map of potential distribution

Processes

Theoretical approach

Ecological characteristics of invasive ants

Processes

Experimental approach: Laboratory

Study of interspecific interactions

Mitigation of invasive ants through biocontrol with competitors

Impacts

Theoretical approach

Impacts

Experimental approach

Below-above ground

4 invasive ants

Tendency to exclude each other

Future

Will climate change affect the patterns of invasion?

Climate and Land use changes

Future high risk regions for 100 IAS

Number of Invasive Alien Species

Future Will climate change affect the patterns of invasion?

Future high risk regions for 100 IAS

Biological invasions per region

Future Will climate change affect the patterns of invasion?

Future high risk regions for 100 IAS

Biological invasions in the hotspots

P1 David Wardle

Swedish University of Agricultural Sciences

P2 Franck Courchamp

University of Paris South

IRD of Nouméa New Caledonia

P4 Jonathan Jeschke

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IG

Berlin

Research group

Community and ecosystem impacts of invasives

Swedish University of Agricultural Sciences

Key SLU personnel

Michael Gundale Biogeochemical cycling Paul Kardol Soil biology

2-years post-doctoral support (2015-2016)

Biological Invasions and Climate Change

University of Paris South

Key personnel

Gloria Luque Sébastien Ollier

Post - doctoral

students

Celine Bellard

Boris Leroy

Olivier Blight

Cleo Bertelsmeier

Graduate students

Melanie Fichaux

Irene Castañeda

Biological invasions and Biodiversity Conservation

Centre IRD of Nouméa New Caledonia

Key personnel

PhD students
Master students
Technical support

Predator-Prey systems Biological invasions

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin

Piero Genovesi

Wolf Saul PhD student

Post-doc for last year

Themes

Patterns

Processes

Impacts

Future

Themes

Patterns

Processes

Impacts

Global Change Biology

Global Change Biology (2013), doi: 10.1111/gcb.12344

Will climate change promote future invasions?

CELINE BELLARD*, WILFRIED THUILLER†, BORIS LEROY‡§, PIERO GENOVESI¶, MICHEL BAKKENES \parallel and FRANCK COURCHAMP*

Myrmecological News 18 73-76 Online Earlier, for print 2013

Forum

Ant Profiler - a database of ecological characteristics of ants (Hymenoptera: Formicidae)

Biol Invasions
DOI 10.1007/s10530-012-0390-y

ORIGINAL PAPER

Global warming may freeze the invasion of big-headed ants

Cleo Bertelsmeier · Gloria M. Luque ·
Franck Courchamp

Conservation Biology

Contributed Paper

Increase in Quantity and Quality of Suitable Areas for Invasive Species as Climate Changes

CLEO BERTELSMEIER, * GLORIA M. LUQUE, AND FRANCK COURCHAMP

Future

FFII

Forecasting Future Invasions and their Impacts

THANK YOU!

David Wardle Franck Courchamp

Eric Vidal

Jonathan Jeschke

