







# **BASIL**

# **Balancing Agroecosystem Services In Landscapes**

Coordinator: Jasmin Joshi

Introduced by: Zachary Kayler (<a href="mailto:kayler@zalf.de">kayler@zalf.de</a>)

Partners: Gael Alvarez, Jorge Alvaro-Fuentes, Olivier Aznar,

Juan Pedro Ferrio Díaz, Sebastien Fontaine, Beat Frey,

Arthur Gessler, Michael Glemnitz, Frank Hagedorn, Roland

Olschewski, Jana Petermann, Karin Pirhofer-Walzl, Helene

Rieckh, Matthias C. Rillig, Larissa Schaub, Christoph

Scherber, Irmi Seidl, Jordi Voltas





Göttingen, Germany

Berlin, Germany



















**Aim** 

# Identify ecosystem services at different scales

Detect possibilities to **balance**maximal environmental and socio-economic sustainability in agricultural landscape







European national regional

landscape

field

plot











# Ecosystem services in agricultural landscape

# **Supporting -**

services necessary for production of all other services

- Nutrient cycling
- Soil Formation
- Primary Production

### **Provisioning –** products from ecosystem services

- Goods like food, timber, fiber, fuel
- Genetic resources and habitats for organisms

### Regulating – benefits from regulation of ecosystem processes

- Climate regulation
- Water regulation
- Regulation of biological populations including
  - detrimental organisms as pathogens and herbivores
  - > beneficial organisms as pollinators and micro-symbionts

## **Cultural –** nonmaterial benefits from ecosystems

- Cultural heritage, educational
- Recreation and Ecotourism
- Aesthetic, spiritual, religious

Millennium Ecosystem Assessment















# Natural habitats within the agricultural landscape forming a heterogeneous agricultural landscape may buffer these losses and provide ecosystem services to agricultural fields











# **Hypotheses**

- 1) <u>extensively</u> and <u>intensively</u> managed agricultural landscapes differ in their ecosystem services.
- 2) <u>a landscape trait-based analysis</u> can reliably integrate biodiversity in agricultural landscapes. These traits can help determine biodiversity levels to improve agricultural economic and environmental sustainability.
- policies and governance systems have a significant impact on environmental and <u>economic sustainability</u> via agricultural landscape management.



Ecosystem services

Three hypotheses

Spatial scale

WP 4:

Communication













# **Socio-economic aspects**

# regional to European scale



#### German investigation area



payment:

0€

#### Alternative: Heterogeneous intensive



landscape diversity: high
plant & animal diversity: medium
nitrogen fertilization: high
payment: 25/50 € per year

#### Alternative: Homogeneous extensive



landscape diversity: low plant & animal diversity: medium nitrogen fertilization: low

payment: 50/75 € per year

#### Alternative: Heterogeneous extensive



landscape diversity: high
plant & animal diversity: high
nitrogen fertilization: low
payment: 50/75 € per year

#### Spanish investigation area

#### Status quo: Homogeneous intensive



landscape diversity: low plant & animal diversity: low nitrogen fertilization: high payment: 0 €

#### Alternative: Heterogeneous intensive



landscape diversity: high
plant & animal diversity: medium
nitrogen fertilization: high
payment: 25/50 € per year

#### Alternative: Homogeneous extensive



landscape diversity: low
plant & animal diversity: medium
nitrogen fertilization: low
payment: 50/75 € per year

#### Alternative: Heterogeneous extensive



landscape diversity: plant & animal diversity: nitrogen fertilization:

payment: 50/75 € per year

high

high

low













# **Socio-economic aspects**

## regional to European scale



#### Status quo: Homogeneous intensive

| 5 |   |    |    |
|---|---|----|----|
|   |   |    |    |
|   |   |    | 92 |
|   |   |    |    |
|   |   |    |    |
|   | 锁 | 96 |    |
|   |   |    |    |

landscape diversity: low plant & animal diversity: low nitrogen fertilization: high payment: 0 €

#### Alternative: Heterogeneous intensive



landscape diversity: high plant & animal diversity: medium nitrogen fertilization: high

payment: 25/50 € per year

#### Alternative: Homogeneous extensive



landscape diversity: low plant & animal diversity: medium nitrogen fertilization: low

payment: 50/75 € per year

#### Alternative: Heterogeneous extensive



landscape diversity: high plant & animal diversity: high nitrogen fertilization: low

payment: 50/75 € per year

**Imagine** that a non-governmental initiative wants to improve the local diversity of agricultural land use.

# Therefore, a voluntary fund is to be raised.

You as a local resident are invited to contribute to this fund.

The annual payment will be used as an incentive for local farmers to change their land use from status quo (homogeneous intensive) to a more diverse production system.













# Socio-economic aspects

# regional to European scale



#### Status quo: Homogeneous intensive



landscape diversity: plant & animal diversity: nitrogen fertilization: payment:

high

0€

low

low

#### Alternative: Heterogeneous intensive



landscape diversity: plant & animal diversity: nitrogen fertilization:

high medium

high

25/50 € per year payment:

#### Alternative: Homogeneous extensive



landscape diversity: plant & animal diversity: nitrogen fertilization:

low medium

low

50/75 € per year payment:

#### Alternative: Heterogeneous extensive



landscape diversity: plant & animal diversity: nitrogen fertilization:

payment:

high high low

50/75 € per year

homogeneous/ heterogeneous distribution of habitats within the agricultural landscape

species diversity in the agricultural field

fertilization treatments by the farmer

- agricultural management
- → influencing species diversity and with this ecosystem services

the amount of money that YOU would pay annually to change the land use from status quo in the chosen alternative













# **Landscape trait-based analysis**

# field and landscape scale













Estación Experimental de Aula Dei (EEAD)



Escola Tècnica Superior d'Enginyeria Agraria de Lleida

in Germany and Spain

European national regional

land managers scientists



Regulating

Supporting

Provisi

Landscape-traitbased analysis

landscape

field

WP 1

scientists



Biodiversity driven soil processes and agroecosystem services

plot

WP 4: Communication

Ecosystem services

Three hypotheses

Spatial scale







Fig.2. Study area in the Quillow catchment, NE Germany (left figure) and in the Central Ebro Basin, NE Spain (right figure) including examples of sampling landscape transects in an agricultural landscape containing different landscape types, such as forest.











## **Landscape trait-based analysis**

# field and landscape scale















# **Landscape trait-based analysis**

field and landscape scale

agricultural field

**FOREST** 













# **Mechanistic approach**



WP 4: Communication

Ecosystem services

Three hypotheses

Spatial scale









## Isotopic Map of Multi-Use Agricultural Landscape



Illustrates that biogeochemical patterns are not constrained to field borders

Can we relate these patterns to functional patterns of organism and structural diversity?









# Thank you very much for your interest!

